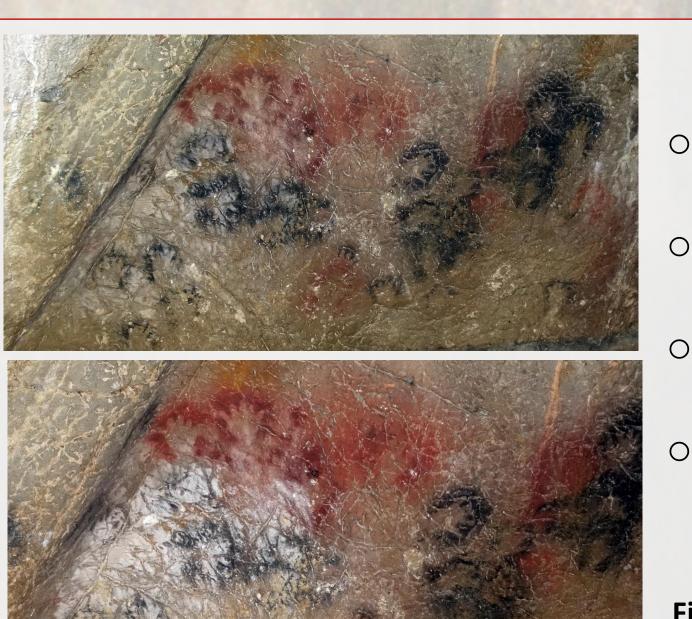
IN SITU OPTICAL MEASUREMENTS OF WATER FILM THICKNESS

ON CAVES WALLS AND SPELEOTHEMS



Light source

Beam splitter

Lenses

Monochromatic

Alexandre Honiat 1,2,3 Bruno Lartiges 1,2, François Bourges 3

Background

¹ University of Toulouse III Paul-Sabatier, ² Géoscience Environnement Toulouse, ³ Géologie Environnement Conseil

- The risks of deterioration caused by climate change on cultural heritage sites are significant.
- Thermal disparities modify the internal aerology of a cave (Lacanette et al. 2009).
- A seasonal water film affects the wall conditions.
- To date, only very few tests of water film thickness measurements have been performed by weighing soaked blotting papers (J. Parmentier et al., 2019).

Figure.1 | Seasonal formation of the white spots that partially cover the negative hands in the Gargas cave after the water film has dried.

Under these conditions, the film of water covering the rock paintings can either dry out or grow by condensation depending on the humidity of the cave air and the relative temperatures of the cave wall and the humid air. When the thin film of water evaporates, a carbonate precipitate is deposited on the wall. As the water film thickens, the pigments in the paint can be resuspended in the water and the paint undergoes a process of vermiculation, and may even be erased in extreme cases.

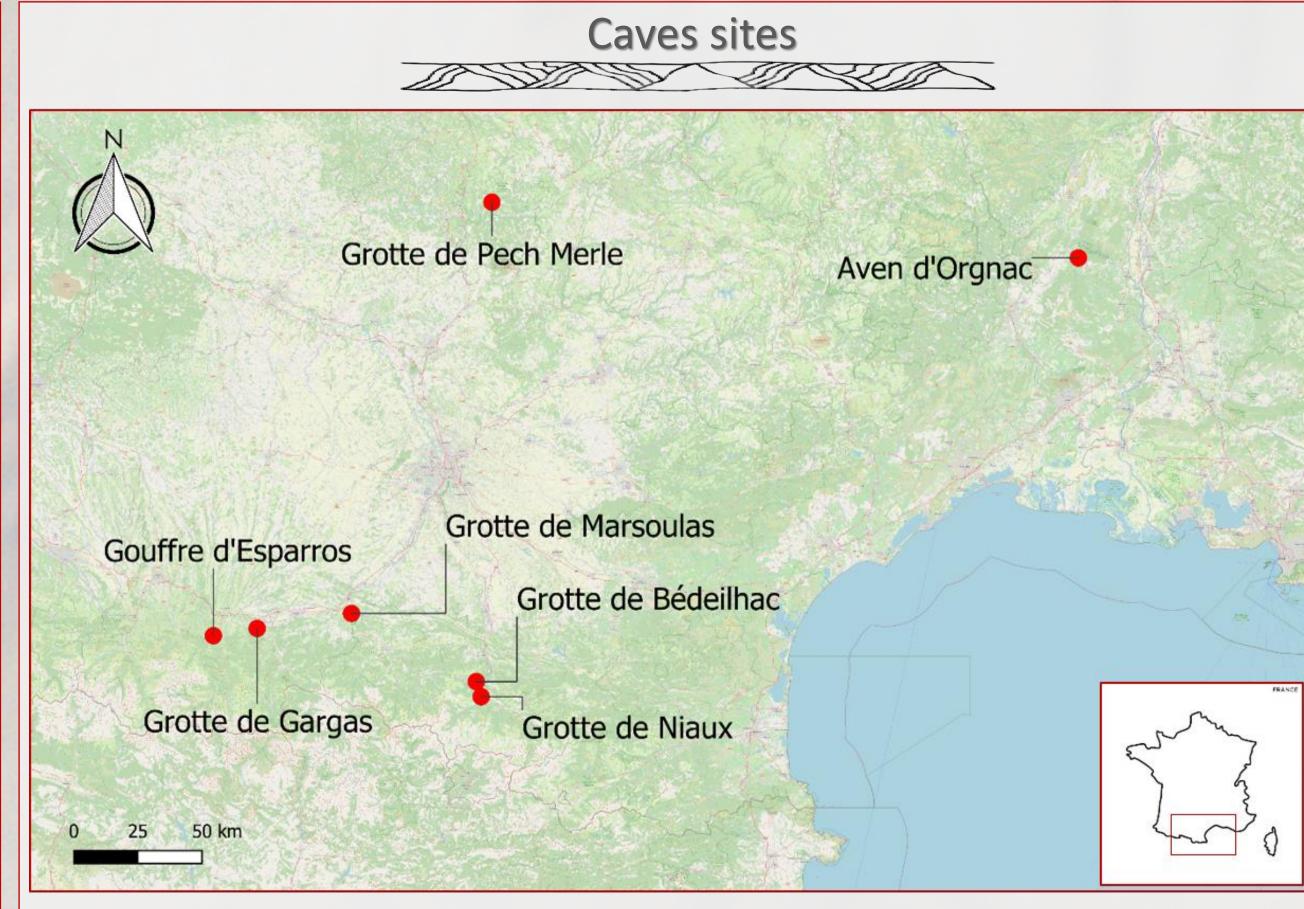


Figure.2 | Map of the location of the sites studied for the measurement of water film.

Spectrometer

Object surface

Origin and interaction of water films in cave

On a cave wall, the water present can have several origins (fig.3). 1) Percolation through the fissural network of the karst and the porosity of the wall. 2) Condensation due to the thermo-hygrometric conditions of the underground air at the interface (humidity: 95 and 100%). To this must be added runoff from upstream, groundwater and capillary rise and spray (aerosols).

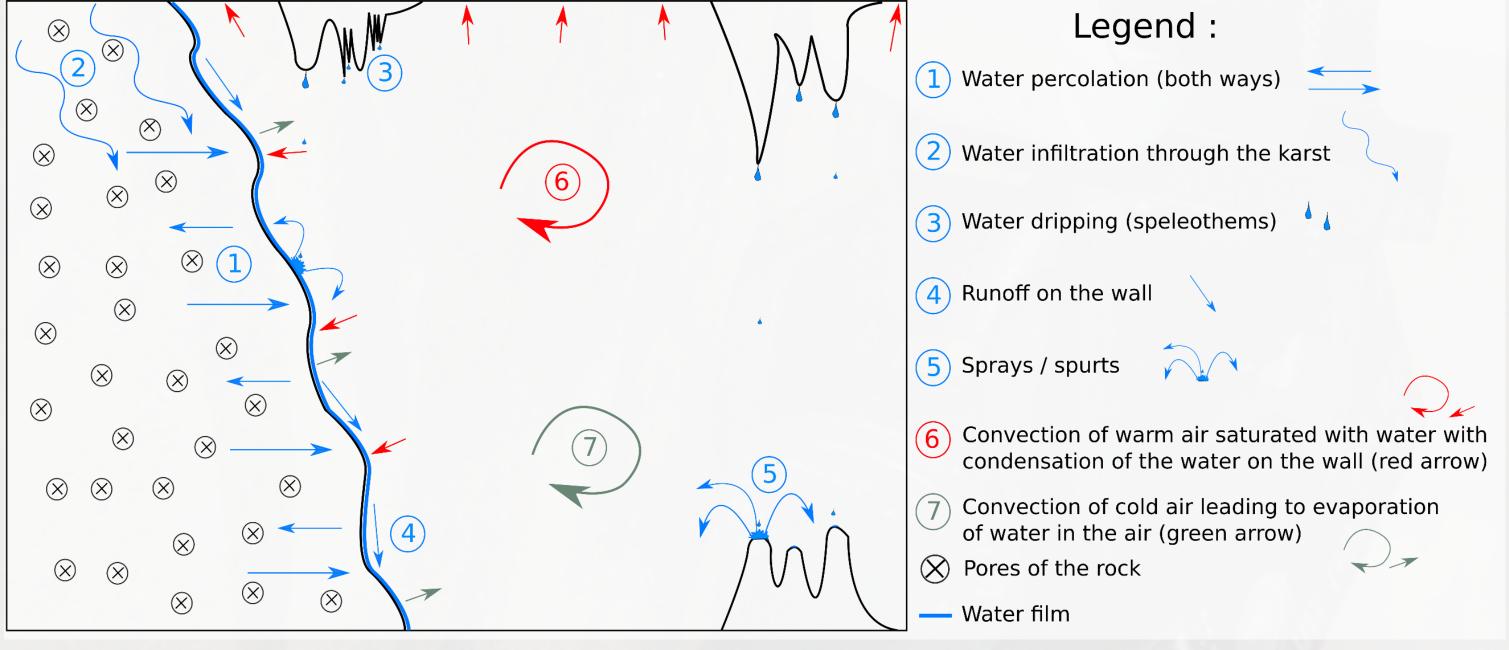
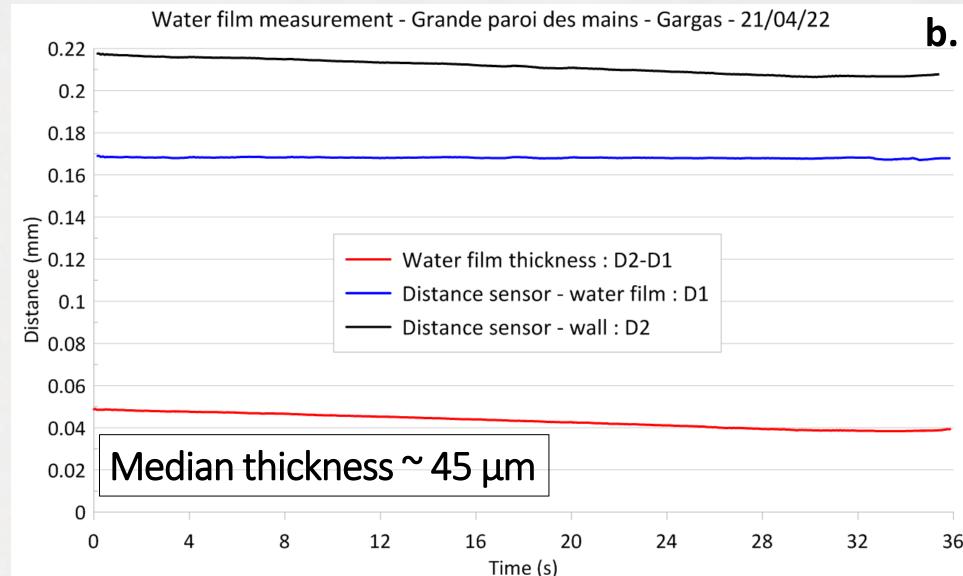


Figure.3 | Diagram of the origins and interactions of water related to the film and associated microclimate

Method

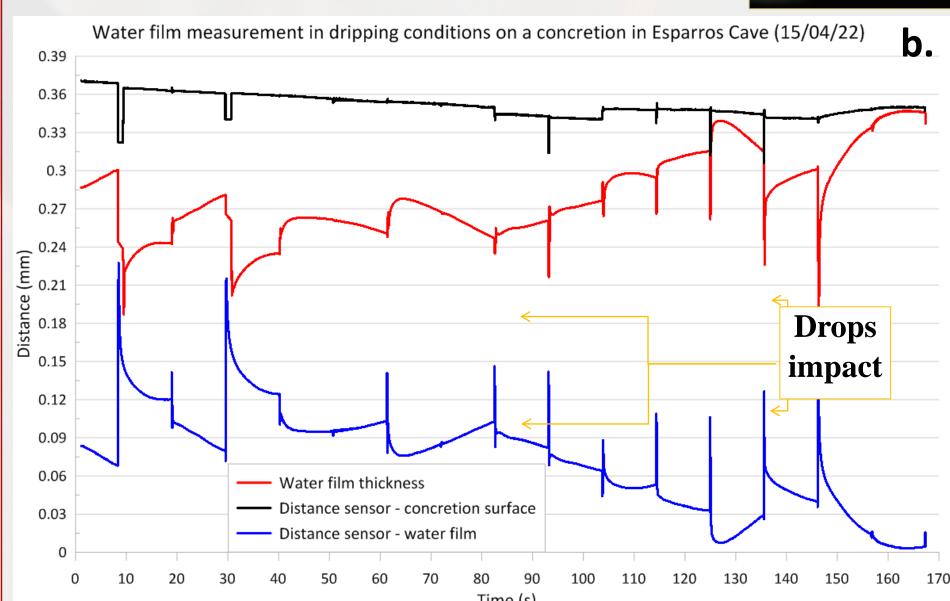
- First we need to choose a sensor capable to measure the water film thickness.
- measurement required a list of specification:
 - Without contact to the wall
 - No modification of the natural condition
 - Dynamical measurement
 - Autonomous and transportable
- A contactless optical sensor, commercialized by Micro-epsilon was selected as the most suitable device.
- Figure.4 | Confocal optical sensor measurement principle (Gong et al., 2011).
- \circ Resolution levels of 1 µm and a measuring range of 0 to 300 µm


Preliminary laboratory tests performed on natural limestone surfaces, gave a range of measurable thicknesses from 25 to 220 μm (thickness sensor range begin at 15 μm; uncertainties of $<\pm 0.3 \mu m$).

Wall painting results

Photo a. Device used to measure the water film on the "Grande paroi des mains".

b. Graph showing the profile of the distance data recording with calculation of the deduced thickness during 36 s at the wet area in the upper right corner of the white spot.



The measurement of the water film on the wall painting is a success. On the "Grande parois des mains" in Gargas cave, we were able to confirm of the presence film in the wet area and its absence in the white zone (fig.5a).

Speleothems results

Figure.6 | Photo a. Measurement on stalagmites (Esparros cave).

b. Graph showing the profile of the distance data record with calculation of the deduced thickness during 170 s.

An innovative experiment was carried out in the Esparros cave: the dynamic measurement of a drip on a speleothem. This proves that it is possible to record the ripples and impacts created by the drip above. It also confirms that the impact zone of the drops is large (fig.6).

Key	/S	re	SU	lts	
			500		Ì

Table.1 Water film measurements in decorated and concretionary caves in Occitanie										
_	Pech Merle	Gargas	Esparros	Niaux	Marsoulas	Orgnac	Bédeilhac			
Median water film thickness	~ 60 μm : calcite film	~ 45 μm & ~ 75 μm	~ 25 μm	~ 56 μm	~ 28 μm	~ 40 μm	~ 40 μm			
Nature of the wall	Calcite on Limestone	Limestone	Limestone and calcite	Limestone	Limestone	Calcite	Limestone			
Measurement stability	+	+ & +	- & +	-	=	=	-			
Origin of water?	Condensation	Cond.	Cond. & Drip	Drip & Stream	Cond.	Drip & Stream	Cond. & Stream			

In spite of the variety of environments and supports (rock quality, variable wall conditions, alterations, calcite coverings, functioning concretions, active condensation), the measurement was nevertheless generally possible on cave walls. The results obtained show a certain homogeneity on the different sites with water film thicknesses between 30 and 50 µm for most of them (**Table.1**).

Perspectives

- The water film will become a new dynamically measurable parameter of caves environment.
- This experimentation may lead to the implementation of a new environmental monitoring tool for the conservation of the remains.
- The physics of the film that determines the water film opens up new paths of reflection.
- The application on speleothems and calcite film is also relevant.

Bourges, F., Genthon, P., Genty, D., Lorblanchet, M., Mauduit, E., D'Hulst, D., 2014. Conservation of prehistoric caves and stability of their inner climate: Lessons from Chauvet and other French caves. Science of The Total Environment 493, 79–91.

https://doi.org/10.1016/j.scitotenv.2014.05.137 Bourges, F., Genty, D., Perrier, F., Lartiges, B., Régnier, É., François, A., Leplat, J., Touron, S., Bousta, F., Massault, M., Delmotte, M., Dumoulin, J.-P., Girault, F., Ramonet, M., Chauveau, C., Rodrigues, P., 2020. Hydrogeological control on carbon dioxide input into the atmosphere of the Chauvet-Pont d'Arc cave. Science of The Total Environment 136844. 716,

https://doi.org/10.1016/j.scitotenv.2020.136844 Gong, S., Ma, W., Dinh, T.-N., 2010. Diagnostic techniques for the dynamics of a thin liquid film under forced flow and evaporating Microfluid Nanofluid 9, 1077–1089.

https://doi.org/10.1007/s10404-010-0626-z J. Parmentier, S. Lejeune, M. Maréchal, F. Bourges, D. Genty, V. Terrapon, J.-C. Maréchal, T. Gilet, 2019. Supplementary material from "A drop does not fall in a straight line: a rationale for the width of

stalagmites." https://doi.org/10.6084/M9.FIGSHARE.C.4737233 Lacanette, D., Vincent, S., Sarthou, A., Malaurent, P., Caltagirone, J.-P., 2009. An Eulerian/Lagrangian method for the numerical simulation of incompressible convection flows interacting with complex

obstacles: Application to the natural convection in the Lascaux cave. International Journal of Heat and Mass Transfer 52, 2528-2542. https://doi.org/10.1016/j.ijheatmasstransfer.2008.12.028 Tibiriçá, C.B., do Nascimento, F.J., Ribatski, G., 2010. Film thickness measurement techniques applied to micro-scale two-phase flow

systems. Experimental Thermal and Fluid Science 34, 463-473. https://doi.org/10.1016/j.expthermflusci.2009.03.009